Asymmetric [3 + 2] Cycloaddition of 2,3-Butadienoates with Electron-Deficient Olefins Catalyzed by Novel Chiral 2,5-Dialkyl-7-phenyl-7phosphabicyclo[2.2.1]heptanes

Guoxin Zhu, Zhaogen Chen, Qiongzhong Jiang, Dengming Xiao, Ping Cao, and Xumu Zhang*

Department of Chemistry, 152 Davey Laboratory
The Pennsylvania State University
University Park, Pennsylvania 16802

Received December 31, 1996
The efficient synthesis of highly functionalized cyclopentane rings remains an important challenge in organic chemistry. ${ }^{1}$ Among the reported methods, $[3+2]$ cycloaddition has the advantage of forming multiple bonds although issues of chemo-, regio-, diastereo-, and enantioselectivity must be resolved if the process is to achieve useful generality. Transition metalcatalyzed, ${ }^{2}$ anionic, ${ }^{3}$ cationic, ${ }^{4}$ and free radical mediated ${ }^{5}[3+$ 2] cycloadditions have been investigated. Recently, an important finding by Lu's group shows that phosphines can catalyze a $[3+2]$ annulation reaction. ${ }^{6}$ This novel $[3+2]$ approach involves cycloaddition of electron-deficient olefins with simple 2,3-butadienoates as the three-carbon source. Inspired by this elegant work, herein we report the first asymmetric version of this reaction with new chiral monophosphines, 2,5-dialkyl-7-phenyl-7-phosphabicyclo[2.2.1]heptanes, as catalysts.

Several chiral monophosphines have been reported in the literature. ${ }^{7}$ Most applications of these phosphines were in formation of asymmetric catalysts with transition metals. ${ }^{7}$ Some chiral phosphines have also been used directly as catalysts for asymmetric reactions. ${ }^{8}$ Our new chiral phosphines contain a rigid phosphabicyclic structure (Figure 2). The rigid, fused bicyclic [2.2.1] structure eliminates the conformational flexibility associated with the five-membered rings in other chiral phosphines (e.g., Duphos and BPE ligands ${ }^{9}$) and represents a new motif for chiral ligand design.

The syntheses of chiral monophosphines $\mathbf{7}$ and $\mathbf{8}$ are shown in Figure 2. Halterman ${ }^{10}$ and Vollhardt ${ }^{11}$ have previously prepared chiral cyclopentadiene derivatives from the chiral diols. Halterman ${ }^{10}$ has synthesized chiral diols 1 and 2 via Birch reduction ${ }^{12}$ followed by asymmetric hydroboration. ${ }^{13}$ Conversion of the optically pure diols to the corresponding mesylates proceeded cleanly. Nucleophilic addition of $\mathrm{Li}_{2} \mathrm{PPh}$ to the chiral dimesylates $\mathbf{3}$ and $\mathbf{4}$ generated the corresponding bicyclic phosphines, which were trapped by $\mathrm{BH}_{3} \cdot$ THF to form the air-

[^0]

Figure 1.

Figure 2. Synthesis of chiral monophosphines.

Figure 3.
stable boron-protected monophosphines 5 and 6, respectively. Deprotection with a strong acid ${ }^{14}$ produced the desired products (7, ($1 R, 2 S, 4 R, 5 S$)-(+)-2,5-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]heptane; $\mathbf{8},(1 R, 2 R, 4 R, 5 R)-(+)$-2,5-diisopropyl-7-phenyl-7-phosphabicyclo[2.2.1]heptane) in high yields.

We performed the asymmetric $[3+2]$ annulation reaction ${ }^{15}$ with several known chiral phosphines as catalysts in addition to 7 and $\mathbf{8}$ (Figure 3). Table 1 lists the results under different sets of conditions and with various substrates. Some general characteristics ${ }^{6}$ of this reaction include the following: (1) two regioisomers \mathbf{A} and \mathbf{B} are formed, but isomer \mathbf{A} generally is preferred (Figure 1); (2) the geometry of the starting electrondeficient olefins remains unchanged in the cycloaddition reaction.

We screened the asymmetric reaction with the chiral phosphines by mixing ethyl 2,3-butadienoate and ethyl acrylate in benzene with $10 \mathrm{~mol} \%$ of phosphine at room temperature (entries $1-5$). New phosphines $\mathbf{7 - 8}$ are more effective in terms of both regioselectivity ($\mathbf{A}: \mathbf{B}$) and enantioselectivity (\% ee of A) than known phosphines $9-11$. The absolute configuration of product \mathbf{A} (entries 1-5) was assigned by correlation with $(1 R, 3 R)$-dihydroxymethyl-3-cyclopentane. ${ }^{16}$ In particular, the enantioselectivity is much higher with 7 (81% ee, R, entry 1) than with 10 (6% ee, S, entry 4), which illustrates the consequences of using a rigid bicyclic [2.2.1] structure rather than the conformationally more flexible five-membered ring. Changing the size of the ester group in the electron-deficient olefin alters the enantioselectivity. With phosphine 7, the enantioselectivity increases as the size of the ester increases (entry $1, \mathrm{Et}, 81 \%$ ee; entry $6,{ }^{\mathrm{i}} \mathrm{Bu}, 86 \%$ ee; entry $7,{ }^{\mathrm{t}} \mathrm{Bu}, 89 \%$

[^1]Table 1. Phosphine-Catalyzed Asymmetric [3+2] Cycloaddition ${ }^{a}$

entry	phosphine	E	R_{1}	R_{2}	R_{3}	solvent	$T\left({ }^{\circ} \mathrm{C}\right)^{e}$	yield (\%)	$\mathbf{A}: \mathbf{B}^{\text {b }}$	$\%$ ee of $\mathbf{A}^{\text {b }}$	config $^{\text {c }}$
1	7	COOEt	Et	H	H	benzene	rt	66	95:5	81	$(-) R$
2	8	COOEt	Et	H	H	benzene	rt	76	97:3	81	(-) R
3	9	COOEt	Et	H	H	benzene	rt	80	80:20	56	(+) S
4	10	COOEt	Et	H	H	benzene	rt	83	72:29	6	(+) S
5	11	COOEt	Et	H	H	benzene	rt	33	73:27	12	(-) R
6	7	$\mathrm{COO}^{\text {i }} \mathrm{Bu}$	Et	H	H	benzene	rt	46	100:0	86	(-) R
7	7	COO'Bu	Et	H	H	benzene	rt	69	95:5	89	(-) R
8	7	COO'Bu	Et	H	H	toluene	0	42	97:3	93	(-) R
9	8	COOMe	Et	H	H	benzene	rt	87	96:4	79	(-) R
10	8	$\mathrm{COO}^{\text {i }} \mathrm{Bu}$	Et	H	H	benzene	rt	92	100:0	88	(-) R
11	8		Et	H	H	toluene	0	88	100:0	93	(-) R
12	8	$\mathrm{COO}^{\text {'Bu }}$	Et	H	H	benzene	rt	75	95:5	88	(-) R
13	7	COOEt	${ }^{\text {'Bu }}$	H	H	benzene	rt	13	97:3	89	(-) R
14	8	COOEt	${ }^{\text {Bu }}$	H	H	benzene	rt	84	94:6	69	(-) R
15^{d}	8	COOEt	Et	COOEt	H	toluene	0	49		79	(+)
16^{d}	8	COOMe	Et	H	COOMe	benzene	rt	84		36	(-)

${ }^{a}$ The reaction was carried out under N_{2} with a chiral phosphine ($10 \mathrm{~mol} \%$), 2,3-butadienoate ($100 \mathrm{~mol} \%$), and electron deficient olefins (1000 $\operatorname{mol} \%) .{ }^{b} \mathbf{A}: \mathbf{B}$ and $\%$ ee were measured by GC with β and γ-DEX columns. ${ }^{c}$ The absolute configuration was determined by comparing the optical rotation with the literature value. ${ }^{16}{ }^{d}$ Olefins ($200 \mathrm{~mol} \%$) were used. ${ }^{e} \mathrm{rt}=$ room temperature.

Scheme 1

ee). A similar trend was observed with phosphine 8 (entries 2, $9-10$, and 12). Upon cooling the reaction to $0^{\circ} \mathrm{C}$ in toluene, up to 93% ee of A was obtained with phosphines $\mathbf{7}$ and $\mathbf{8}$ with excellent regioselectivity (entries 8 and 11). Increasing the size of the ester moiety in the 2,3-butadienoates, however, has different effects on the product ee with phosphine 7 (entry 1, Et, 81% ee; entry 13 , ${ }^{\mathrm{t}} \mathrm{Bu}, 89 \%$ ee) or $\mathbf{8}$ (entry $2, \mathrm{Et}, 81 \%$ ee; entry $14,{ }^{\mathrm{t}} \mathrm{Bu}, 69 \%$ ee). A second major difference between catalysis by $\mathbf{7}$ or $\mathbf{8}$ is in the yield of products. The conversion to the desired products is generally higher with 8 than with 7 (e.g., entries 6-8 vs entries 9-12). With diethyl maleate (entry 15) and dimethyl fumarate (entry 16) as substrates, single cis and trans products were obtained with $\mathbf{8}$, respectively. While the $\%$ ee of the cis product (entry $15,79 \%$ ee) is slightly lower than the result with ethyl acrylate (entry $2,81 \%$ ee), the trans product has much lower optical purity (entry 16, 36\% ee). For two-atom species ${ }^{17}$ other than acrylates, we have studied acrylonitrile and methyl vinyl ketone as substrates. With ethyl 2,3-butadienoate as the three-atom species and 7 as the catalyst, 48% ee of $\mathbf{A}, \mathbf{A} / \mathbf{B}(97 / 3)$ and 94% yield were obtained with acrylonitrile while 27% ee of $\mathbf{A}, \mathbf{A} / \mathbf{B}(81 / 19)$ and 33% yield were achieved with methyl vinyl ketone.

[^2]

Figure 4.
A detailed mechanism of this reaction has not been rigorously proven. Scheme 1 shows Lu's proposed mechanism. ${ }^{6}$ A catalytic amount of the phosphine acts as a nucleophilic trigger. ${ }^{18}$ Formation of cyclic intermediates $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ is the key step for asymmetric induction. The stereochemistry of the starting E and Z olefins is preserved in the products, which provides suggestive evidence that this reaction proceeds through a concerted mechanism. ${ }^{19}$ Based on this model, we offer a mechanistic rationale for the high asymmetric induction with 7 and 8 (Figure 4). The R groups from 7 and 8 can effectively block the "bottom" face of the allylic carbanion 12/13, and this shielding forces the electron-deficient olefins to approach from the "top" face. The electron-withdrawing olefins approach with the endo orientation as shown in Figure 4. The Z olefins (e.g., diethyl maleate) show a similar degree of selectivity as do the acrylates, while E olefins (e.g., dimethyl fumarate) introduce large groups around the sterically crowded C_{1} center. It is possible that the lower enantioselectivity obtained with E olefins is due to this disfavored interaction between COOEt and substituents of E olefins.
In conclusion, we have developed a new family of chiral phosphines with a unique fused bicyclic [2.2.1] ring structure. A [$3+2$] cycloaddition between 2,3-butadienoates and electrondeficient olefins catalyzed by these chiral monophosphines gives cyclopentene products with excellent regioselectivity and enantioselectivity. This method is a potentially powerful tool for the synthesis of chiral cyclopentanoids.

Acknowledgment. This work was supported by a Camille and Henry Dreyfus New Faculty Award, an ONR young investigator award, a DuPont Young Faculty Award, Amoco, and Hoechst Celanese Corporation. This work is dedicated to Professor Xiyan Lu for his encouragement throughout the project. We thank Supelco for the gift of a γ-DEX 225 GC column and Professor Ray Funk for helpful suggestions.

Supporting Information Available: Spectroscopic data for compounds 5-8 and experimental details (7 pages). See any current masthead page for ordering and Internet access instructions.
JA9644687

[^0]: (1) For a review, see: Hudlicky, T.; Price, J. D. Chem. Rev. 1989, 89, 1467.
 (2) For reviews, see: (a) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 1. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49 and references cited therein.
 (3) Beak, P.; Burg, D. A. J. Org. Chem. 1989, 54, 647 and references cited therein.
 (4) Danheiser, R. L.; Carini, D. J.; Fink, D. M.; Basak, A. Tetrahedron 1983, 39, 935.
 (5) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E., Jr.; Miller, F. M. J. Am. Chem. Soc. 1988, 110, 3300.
 (6) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.
 (7) Hamada, Y.; Seto, N.; Ohmori, H.; Hatano, K. Tetrahedron Lett. 1996, 37, 7565 and references cited therein.
 (8) Vedejs, E.; Dangulis, O.; Diver, S. T. J. Org. Chem. 1996, 61, 430.
 (9) (a) Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518. (b) Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125.
 (10) (a) Chen, Z.; Eriks, K.; Halterman, R. L. Organometallics 1991, 10, 3449 . (b) Halterman, R. L.; Chen, Z.; Khan, M. Organometallics 1996, 15, 3957.
 (11) Halterman, R. L.; Vollhardt, K. P. C.; Welker, M. E.; Blaser, D.; Boese, R. J. Am. Chem. Soc. 1987, 109, 8105.
 (12) Kwart, H.; Conley, R. A. J. Org. Chem. 1973, 38, 2011.
 (13) Brown, H. C.; Jadhav, P. K.; Mandal, A. K. J. Org. Chem. 1982, 47, 5074.

[^1]: (14) McKinstry, L.; Livinghouse, T. Tetrahedron 1995, 51, 7655.
 (15) For an example of asymmetric $[3+2]$ cycloaddition, see: Yamamoto, A.; Ito, Y.; Hayashi, T. Tetrahedron Lett. 1989, 30, 375.
 (16) (a) Richter, W. J.; Richter, B. Isr. J. Chem. 1976, 15, 57. (b) Birch, S. F.; Dean, R. A. J. Chem. Soc. 1953, 2477. The detailed procedure is reported in the Supporting Information.

[^2]: (17) Substrates such as β-substituted enones do not work because 2,3butadienoates are better acceptors and dimerization of 2,3-butadienoates occurs (see ref 6).
 (18) Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167 and references cited therein.
 (19) A stepwise mechanism was suggested for a related $[3+2]$ cyclization reaction: Padwa, A.; Yeske, P. E. J. Am. Chem. Soc. 1988, 110, 1617.

